Quantum classifiers with a trainable kernel

2024-05-29 09:09 159 浏览
Kernel function plays a crucial role in machine learning algorithms such as classifiers. In this paper, we aim to improve the classification 
performance and reduce the reading out burden of quantum classifiers. We devise a universally trainable quantum feature mapping layout to broaden the scope of feature states and avoid the inefficiently straight preparation of quantum superposition states. We also propose an 
improved quantum support vector machine that employs partially evenly weighted trial states. In addition, we analyze its error sources and 
superiority. As a promotion, we propose a quantum iterative multiclassifier framework for one-versus-one and one-versus-rest approaches. 
Finally, we conduct corresponding numerical demonstrations in the qiskit package. The simulation result of trainable quantum feature 
mapping shows considerable clustering performance, and the subsequent classification performance is superior to the existing quantum 
classifiers in terms of accuracy and distinguishability.


Article: https://doi.org/10.1103/PhysRevApplied.21.054056