Quantum nonlocality describes a stronger form of quantum correlation than that of entanglement. It refutes
Einstein’s belief of local realism and is among the most distinctive and enigmatic features of quantum mechanics. It is a crucial resource for achieving quantum advantages in a variety of practical applications, ranging from
cryptography and certified random number generation via self-testing to machine learning. Nevertheless, the detection of nonlocality, especially in quantum many-body systems, is notoriously challenging. Here, we report an
experimental certification of genuine multipartite Bell correlations, which signal nonlocality in quantum manybody systems, up to 24 qubits with a fully programmable superconducting quantum processor. In particular, we
employ energy as a Bell correlation witness and variationally decrease the energy of a many-body system across
a hierarchy of thresholds, below which an increasing Bell correlation depth can be certified from experimental
data. As an illustrating example, we variationally prepare the low-energy state of a two-dimensional honeycomb
model with 73 qubits and certify its Bell correlations by measuring an energy that surpasses the corresponding
classical bound with up to 48 standard deviations. In addition, we variationally prepare a sequence of low-energy
states and certify their genuine multipartite Bell correlations up to 24 qubits via energies measured efficiently
by parity oscillation and multiple quantum coherence techniques. Our results establish a viable approach for
preparing and certifying multipartite Bell correlations, which provide not only a finer benchmark beyond entanglement for quantum devices, but also a valuable guide towards exploiting multipartite Bell correlation in a
wide spectrum of practical applications.
Article:https://arxiv.org/abs/2406.17841